例6.23

题目

Q:P149 设函数 . 证明:
(1) 存在 ,使得 ;
(2) 存在 ,使得 .

分析

A:题20
变限积分求导公式有一个很重要的特质在于,虽然这是一项目,形如,,但是因为像是例6.22里说的有一个隐藏的零点,这一项其实是两项,可以补项减一个0构造成

而这个补充出来的差的结构,也就为拉格朗日中值定理或者柯西中值定理中,各种两者之差的形式提供了一个很好的结构,分母中构造的也是这个理念

【令 ,则 .
根据连续函数的零点定理知,存在 ,使得 ,即 .
(2) 令 ,在区间 上应用柯西中值定理,则存在 ,使得

.证】(1) 因为 ,所以 .